Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Poly[μ-2,3-dihydroxypropan-1-olatosodium]

Gabriele Schatte, ${ }^{\text {a* Jianheng Shen, }}$, Martin Reaney ${ }^{\text {b }}$ and Ramaswami Sammynaiken ${ }^{\text {a }}$

${ }^{\text {a }}$ Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and bepartment of Food and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
Correspondence e-mail: gabriele.schatte@usask.ca
Received 29 March 2010; accepted 30 April 2010
Key indicators: single-crystal X-ray study; $T=183 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.026 ; w R$ factor $=0.068$; data-to-parameter ratio $=14.7$.

The Na^{+}cation in the title compound, $\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right)\right]_{n}$ or $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{gl}\right]$, is coordinated by five O atoms leading to a distorted trigonal-bipyramidal geometry. The negatively charged O atom of the glycerolate anion is in an equatorial position, and the O atom of the hydroxo group, attached to the secondary C atom, occupies an axial position completing a five-membered non-planar chelate ring; this defines the asymmetric unit. The Na^{+}cation is coordinated by three other symmetry-related monodentate $\mathrm{H}_{2} \mathrm{gl}$ - ligands, so that each $\mathrm{H}_{2} \mathrm{gl}^{-}$ligand is bonded to four Na^{+}ions. The $\mathrm{H}_{2} \mathrm{gl}^{-}$ligands are connected via strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and these, together with the $\mathrm{Na} \cdots \mathrm{O}$ interconnections, are responsible for the formation of polymeric sheets which propagate in the directions of the b and c axes.

Related literature

For syntheses of mono sodium glyceroxide, see: Letts (1872); Fairbourne \& Toms (1921); Gross \& Jacobs (1926). For the syntheses and characterization of sodium alkoxides and aryloxides, see: Davies et al. (1982); Brooker et al. (1991); Hogerheide et al. (1996). For related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998).

Experimental

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right)\right]$	$V=466.43(4) \AA^{3}$
$M_{r}=114.08$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=8.1117(4) \AA$	$\mu=0.22 \mathrm{~mm}^{-1}$
$b=6.1559(3) \AA$	$T=183 \mathrm{~K}$
$c=9.4882(5) \AA$	$0.25 \times 0.25 \times 0.13 \mathrm{~mm}$

$\beta=100.113$ (3) ${ }^{\circ}$
$0.25 \times 0.25 \times 0.13 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD fourcircle diffractometer
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.948, T_{\text {max }}=0.972$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.068 \quad$ independent and constrained
$S=1.07$ refinement
1058 reflections
72 parameters

1963 measured reflections 1058 independent reflections 953 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 1-\mathrm{Na} 1$	$2.4243(10)$	$\mathrm{Na} 1-\mathrm{O} 2^{\text {iii }}$	$2.3551(9)$
$\mathrm{O} 2-\mathrm{Na} 1$	$2.4237(9)$	$\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{ii}}$	$3.3549(10)$
$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.3163(9)$	$\mathrm{Na} 1-\mathrm{O}^{\mathrm{iii}}$	$3.5265(10)$
$\mathrm{Na} 1-\mathrm{O}^{\mathrm{ii}}$	$2.3462(10)$	$\mathrm{Na} 1-\mathrm{O}^{\mathrm{iv}}$	$3.8258(10)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y,-z+1$; (iv)
$-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $^{2} \mathrm{OO}^{\text {iv }}$	$0.865(18)$	$1.723(18)$	$2.5837(12)$	$173.0(18)$
O3-H3 $^{\text {(18 }}{ }^{\mathrm{V}}$	$0.857(18)$	$1.804(18)$	$2.6575(12)$	$173.7(19)$

Symmetry codes: (iv) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $x, y-1, z$.
Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993) and ORTEP (in SHELXTL-NT; Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Funding for this research was contributed by The Agriculture Development Fund (ADF), administered by Saskatchewan Agriculture (SMA) and the National Sciences and Engineering Research Council (NSERC).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2652).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brooker, S., Edelmann, F. T., Kottke, T., Roesky, H. W., Sheldrick, G. M., Stalke, D. \& Whitmire, K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 144 146.

Davies, J. E., Kopf, J. \& Weiss, E. (1982). Acta Cryst. B38, 2251-2253.
Fairbourne, A. \& Toms, H. (1921). J. Chem. Soc. Trans. 119, 1035-1040.
Gross, F. C. \& Jacobs, J. M. (1926). J. Soc. Chem. Ind. London, 45, 320T-321T.
Hogerheide, M. P., Ringelberg, S. N., Janssen, M. D., Boersma, J., Spek, A. L. \& van Kotten, G. (1996). Inorg. Chem. 35, 1195-1200.
Letts, E. A. (1872). Berichte, 5, 159-160.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rath, S. P., Rajak, K. K., Mondal, S. \& Chakravorty, A. (1998). J. Chem. Soc. Dalton Trans. pp. 2097-2101.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supplementary materials

Poly[μ-2,3-dihydroxypropan-1-olato-sodium]

G. Schatte, J. Shen, M. Reaney and R. Sammynaiken

Comment

We have shown that alkali metal glyceroxides can be used as efficient catalysts in trans-esterification reactions to produce biodiesel. Earlier syntheses of the mono sodium glyceroxide, $\mathrm{Na}\left[\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})\right]$ (referred to as $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{gl}\right]$), involved the reaction of excess sodium dissolved in ethanol with glycerol (Letts, 1872; Fairbourne \& Toms, 1921). A more elegant and less expensive method for the the preparation of the title compound, (I), involved heating and stirring together equimolar quantities of powdered sodium hydroxide and glycerol (Gross \& Jacobs, 1926).

Crystal structures of putative alkali metal glycerolates, $\mathrm{M}\left[\mathrm{H}_{2} \mathrm{gl}\right]$, have not been reported to our knowledge. The crystal structure of oxo(propane-1,3-diol-2-olato)(salicylaldehyde hydroxophenylmethylenehydrazonato- $\mathrm{N}, O, O^{\prime}$) vanadium (V) has been until now the only reported structure containing coordinated $\mathrm{H}_{2} \mathrm{gl}^{-}$ions (Rath et al., 1998). The crystal structure of (I) was determined as part of our research on catalysts which can be used in the production of biodiesel. The results of our crystal structure determination confirmed the earlier proposed structure based on derivative chemistry (Fairbourne \& Toms, 1921).

The $\mathrm{H}_{2} \mathrm{gl}{ }^{-}$anion behaves as a multifunctional ligand in the structure of (I), Fig. 1. In the first mode, the $\mathrm{H}_{2} \mathrm{gl}{ }^{-}$ligand is coordinating to the sodium atom by one oxo- (O 1) and one hydroxo (O 2) group forming a non-planar 5-membered ring. Symmetry related $\mathrm{H}_{2} \mathrm{gl}{ }^{-}$ligands form essentially monodentate attachments. Pseudo-five-membered chelate rings are formed if rather longer $\mathrm{Na} \cdots \mathrm{O}$ interactions are taken into account [$\mathrm{Na} \cdots \mathrm{O}$ distances ranging from 3.35 to $3.83 \AA$ (sum of the van der Waals radii, $3.8 \AA$)]; Table 1 and Fig. 2.

The observed intra- and inter-molecular $\mathrm{Na} \cdots \mathrm{O}$ bond distances are elongated in comparison to the related bond distances reported for sodium phenolate complexes (Hogerheide et al., 1996; Brooker et al., 1991) and sodium tert-butoxide (Davies et al., 1982). The oxygen atoms O 1 and O 2 act as bridging atoms between sodium atoms forming a planar $\mathrm{O} \cdots \mathrm{Na} \cdots \mathrm{O} \cdots \mathrm{Na}$ ring with alternation between O 1 in one ring and O 2 in the following ring. Each $\mathrm{H}_{2} \mathrm{gl}^{-}$ligand is bonded to four Na ions. The $\mathrm{H}_{2} \mathrm{gl}^{-}$ligands are connected via two strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions (Table 2 and Fig. 2). Both the $\mathrm{Na} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interconnections are responsible for the formation of polymeric sheets which extends indefinitely in the directions of the b and c axes (Fig. 2). Finally, it is noted that in (I), the hydroxo group attached to primary carbon atom of the glycerol is deprotonated. This is in contrast to the reported structure for the vanadium- $\mathrm{H}_{2} \mathrm{gl}$ complex, where the hydroxo group attached to secondary carbon atom is deprotonated (Rath et al., 1998).

Experimental

A sodium hydroxide solution ($240 \mathrm{~g}, 50 \%$) was freshly prepared by dissolving sodium hydroxide pellets ($120 \mathrm{~g}, 3 \mathrm{~mol}$) in water (120 g). Glycerol ($92 \mathrm{~g}, 1 \mathrm{~mol}$) was slowly added into the hot sodium hydroxide solution under agitation. The mixture was allowed to stand and to cool down to room temperature. Colourless crystals of mono sodium glyceroxide started to form. The crystals are only stable in a very basic solution at ambient temperatures. A suitable single crystal was quickly

supplementary materials

coated with oil, collected onto the nylon fiber of a mounted CryoLoop ${ }^{\text {TM }}$ and quickly transferred to the cold stream of the X-ray diffractometer. The data collection was performed at $-90^{\circ} \mathrm{C}$ instead of $-100^{\circ} \mathrm{C}$ to prevent cracking of the crystals at the lower temperature.

Refinement

The C-bound H atoms were geometrically placed $\left(\mathrm{C}-\mathrm{H}=0.98-1.00 \AA\right.$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). The hydrogen atoms of the hydroxo groups were located in the difference Fourier map and were allowed to refine freely.

Figures

Fig. 1. Molecular structure of the asymmetric unit in (I) showing the labelling scheme. Nonhydrogen atoms are represented by displacement ellipsoids at the 30% propability level.

Poly[μ-2,3-dihydroxypropan-1-olato-sodium]

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right)\right]$
$M_{r}=114.08$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.1117$ (4) \AA
$b=6.1559$ (3) \AA
$c=9.4882(5) \AA$
$\beta=100.113(3)^{\circ}$
$V=466.43(4) \AA^{3}$
$Z=4$
$F(000)=240$
$D_{\mathrm{x}}=1.624 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1052 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=183 \mathrm{~K}$
Plate, colourless
$0.25 \times 0.25 \times 0.13 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD four-circle diffractometer
Radiation source: fine-focus sealed tube horizonally mounted graphite crystal
Detector resolution: 9 pixels mm^{-1}
ω scans with κ offsets
Absorption correction: multi-scan
(SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.948, T_{\text {max }}=0.972$

> 1058 independent reflections
> 953 reflections with $I>2 \sigma(I)$
> $R_{\mathrm{int}}=0.016$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=4.0^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-7 \rightarrow 7$
> $l=-12 \rightarrow 12$

1963 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.068$
$S=1.07$
1058 reflections
72 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0234 P)^{2}+0.217 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.14472(10)$	$0.45332(13)$	$0.38811(9)$	$0.01321(19)$
O2	$0.06200(10)$	$-0.00441(13)$	$0.35060(9)$	$0.01191(19)$
H2	$-0.009(2)$	$-0.029(3)$	$0.273(2)$	$0.041(5)^{*}$
O3	$0.29537(11)$	$-0.26839(14)$	$0.23818(9)$	$0.0148(2)$

H3	$0.248(2)$	$-0.352(3)$	$0.292(2)$	$0.039(5)^{*}$
C1	$0.26407(14)$	$0.28434(18)$	$0.40749(12)$	$0.0131(2)$
H1A	0.2830	0.2379	0.5089	0.016^{*}
H1B	0.3715	0.3403	0.3864	0.016^{*}
C2	$0.21073(13)$	$0.08815(18)$	$0.31254(12)$	$0.0112(2)$
H2A	0.1843	0.1381	0.2108	0.013^{*}
C3	$0.34809(14)$	$-0.08287(19)$	$0.32497(13)$	$0.0145(2)$
H3A	0.4485	-0.0189	0.2951	0.017^{*}
H3B	0.3792	-0.1287	0.4262	0.017^{*}
Na1	$-0.08654(6)$	$0.26587(7)$	$0.46569(5)$	$0.01393(15)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0163(4)$	$0.0087(4)$	$0.0148(4)$	$0.0023(3)$	$0.0031(3)$	$-0.0006(3)$
O2	$0.0120(4)$	$0.0120(4)$	$0.0125(4)$	$-0.0011(3)$	$0.0040(3)$	$0.0004(3)$
O3	$0.0188(4)$	$0.0101(4)$	$0.0169(4)$	$-0.0001(3)$	$0.0066(3)$	$-0.0019(3)$
C1	$0.0140(5)$	$0.0101(5)$	$0.0150(5)$	$0.0012(4)$	$0.0015(4)$	$-0.0006(4)$
C2	$0.0118(5)$	$0.0105(5)$	$0.0121(5)$	$-0.0004(4)$	$0.0043(4)$	$0.0008(4)$
C3	$0.0134(5)$	$0.0109(5)$	$0.0195(6)$	$0.0004(4)$	$0.0035(4)$	$-0.0025(4)$
Na 1	$0.0186(3)$	$0.0108(2)$	$0.0133(2)$	$0.00036(17)$	$0.00535(18)$	$-0.00017(17)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C1	1.4108 (13)
$\mathrm{O} 1-\mathrm{Na} 1$	2.4243 (10)
$\mathrm{O} 2-\mathrm{C} 2$	1.4366 (13)
$\mathrm{O} 2-\mathrm{Na} 1$	2.4237 (9)
$\mathrm{O} 2-\mathrm{H} 2$	0.868 (19)
O3-C3	1.4288 (14)
O3-H3	0.86 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.5233 (15)
$\mathrm{C} 1-\mathrm{Na} 1$	2.9929 (13)
C1-H1A	0.9900
C1-H1B	0.9900
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1^{\mathrm{i}}$	132.80 (7)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1$	99.17 (7)
$\mathrm{Na} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Na} 1$	85.61 (3)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1^{\text {iii }}$	119.44 (6)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1$	110.30 (6)
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1$	96.88 (3)
C2-O2-H2	108.5 (13)
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{H} 2$	118.0 (13)
$\mathrm{Na} 1-\mathrm{O} 2-\mathrm{H} 2$	101.2 (13)
C3-O3-Na $1^{\text {iv }}$	120.20 (7)
C3-O3-H3	104.9 (13)

C2-C3	1.5224 (15)
C2-H2A	1.0000
C3-H3A	0.9900
C3-H3B	0.9900
$\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	2.3163 (9)
$\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	2.3462 (10)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.3551 (9)
$\mathrm{Na}-\mathrm{O} 2{ }^{\text {ii }}$	3.3549 (10)
$\mathrm{Na}-\mathrm{O} 3^{\text {iii }}$	3.5265 (10)
$\mathrm{Na}-\mathrm{O} 1^{\text {iv }}$	3.8258 (10)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	111.54 (9)
O3-C3-H3A	109.3
C2-C3-H3A	109.3
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.3
C2-C3-H3B	109.3
H3A-C3-H3B	108.0
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 3^{\mathrm{ii}}$	111.55 (4)
$\mathrm{O} 1^{\text {i }}-\mathrm{Na} 1-\mathrm{O} 2^{\text {iii }}$	93.81 (3)

sup-4

$\mathrm{Na} 1^{\text {iv }}-\mathrm{O} 3-\mathrm{H} 3$	102.2 (12)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	120.25 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	112.98 (9)	$\mathrm{O} 1^{\text {i}}-\mathrm{Na} 1-\mathrm{O} 2$	162.14 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1$	53.10 (5)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 2$	84.89 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1$	84.18 (6)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2$	83.12 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.0	$\mathrm{O} 1^{\text {i}}-\mathrm{Na} 1-\mathrm{O} 1$	94.39 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.0	$\mathrm{O} 3{ }^{\text {iii }} \mathrm{Na}-\mathrm{O} 1$	106.12 (3)
$\mathrm{Na} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	78.4	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 1$	125.50 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.0	$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1$	73.59 (3)
C2-C1-H1B	109.0	$\mathrm{O} 1^{\text {i }}-\mathrm{Na} 1-\mathrm{C} 1$	112.47 (3)
$\mathrm{Na} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	161.7	O3ii- ${ }^{\text {ii }}$ - $1-\mathrm{C} 1$	115.04 (4)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.8	$\mathrm{O} 2 \mathrm{iii}-\mathrm{Na} 1-\mathrm{C} 1$	101.71 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	109.99 (9)	$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{C} 1$	51.63 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	109.25 (9)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{C} 1$	27.73 (3)
C3-C2-C1	111.99 (9)		
$\mathrm{Na} 1{ }^{\mathrm{i}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	155.38 (7)	$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1$	130.18 (4)
$\mathrm{Na} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	62.86 (9)	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{C} 1$	-14.05 (6)
$\mathrm{Na} 1{ }^{\text {i }}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1$	92.51 (8)	$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{C} 1$	110.87 (4)
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	35.83 (11)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	132.68 (7)
$\mathrm{Na} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	146.65 (7)	$\mathrm{Na} 1{ }^{\text {i }}-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	0.0
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	-87.48 (9)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	-113.39 (6)
$\mathrm{Na} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	23.34 (10)	$\mathrm{Na} 1{ }^{\text {i }}-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	113.93 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-63.28 (12)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	34.84 (8)
$\mathrm{Na} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-17.61 (7)	$\mathrm{Na} 1{ }^{\text {i }}-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	-97.85 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	174.62 (9)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2$	-33.86 (6)
$\mathrm{Na} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-139.72 (8)	$\mathrm{Na} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2$	-166.54 (4)
$\mathrm{Na} 1^{\text {iv }}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	25.87 (12)	$\mathrm{Na} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Na} 1-\mathrm{C} 1$	-132.68 (7)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	56.91 (12)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	-52.49 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	178.59 (9)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	-177.05 (6)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	-43.92 (14)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	76.71 (7)
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	81.00 (12)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	-47.85 (7)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	113.73 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	-151.64 (6)
$\mathrm{Na} 1^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	-121.34 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	83.80 (6)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	-124.92 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 2$	137.03 (7)
$\mathrm{Na} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	0.0	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 2$	12.47 (5)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1$	5.26 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Na} 1-\mathrm{O} 1$	-124.56 (9)

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y+1 / 2,-z+1 / 2$; (iii) $-x,-y,-z+1$; (iv) $-x, y-1 / 2,-z+1 / 2$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	$0.865(18)$	$1.723(18)$	$2.5837(12)$	$173.0(18)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots 1^{\mathrm{v}}$	$0.857(18)$	$1.804(18)$	$2.6575(12)$	$173.7(19)$

Symmetry codes: (iv) $-x, y-1 / 2,-z+1 / 2$; (v) $x, y-1, z$.

Fig. 1

Fig. 2

